Cellular mRNAs access second ORFs using a novel amino acid sequence-dependent coupled translation termination-reinitiation mechanism.
نویسندگان
چکیده
Polycistronic transcripts are considered rare in the human genome. Initiation of translation of internal ORFs of eukaryotic genes has been shown to use either leaky scanning or highly structured IRES regions to access initiation codons. Studies on mammalian viruses identified a mechanism of coupled translation termination-reinitiation that allows translation of an additional ORF. Here, the ribosome terminating translation of ORF-1 translocates upstream to reinitiate translation of ORF-2. We have devised an algorithm to identify mRNAs in the human transcriptome in which the major ORF-1 overlaps a second ORF capable of encoding a product of at least 50 aa in length. This identified 4368 transcripts representing 2214 genes. We investigated 24 transcripts, 22 of which were shown to express a protein from ORF-2 highlighting that 3' UTRs contain protein-coding potential more frequently than previously suspected. Five transcripts accessed ORF-2 using a process of coupled translation termination-reinitiation. Analysis of one transcript, encoding the CASQ2 protein, showed that the mechanism by which the coupling process of the cellular mRNAs was achieved was novel. This process was not directed by the mRNA sequence but required an aspartate-rich repeat region at the carboxyl terminus of the terminating ORF-1 protein. Introduction of wobble mutations for the aspartate codon had no effect, whereas replacing aspartate for glutamate repeats eliminated translational coupling. This is the first description of a coordinated expression of two proteins from cellular mRNAs using a coupled translation termination-reinitiation process and is the first example of such a process being determined at the amino acid level.
منابع مشابه
No Nonsense: The Protection of Wild-Type mRNAs From Nonsense-Mediated mRNA Decay in <i>Saccharomyces cerevisiae</i>
Nonsense-mediated mRNA decay is a translation-dependent surveillancemechanism responsible for rapidly degrading mRNAs with premature termination codons(PTCs). However, there is a significant portion of mRNAs that do not contain a PTC butare substrates for the NMD pathway. The underlying mechanisms of how the cellularmachinery determines whether or not to degrade an mRNA via the ...
متن کاملA key factor of translation reinitiation, ribosomal protein L24, is involved in gynoecium development in Arabidopsis.
In polycistronic genes, uORFs (upstream open reading frames) within the 5'-transcript leader sequence of major ORFs may regulate the translation of these major ORFs. In this case, ribosome reinitiates translation at a start codon of downstream ORF after translation termination of uORF. The plant RPL24 (ribosomal protein L24) is a key factor for translation reinitiation of downstream ORFs on the...
متن کاملIn vivo evidence that eIF3 stays bound to ribosomes elongating and terminating on short upstream ORFs to promote reinitiation
Translation reinitiation is a gene-specific translational control mechanism characterized by the ability of some short upstream ORFs to prevent recycling of the post-termination 40S subunit in order to resume scanning for reinitiation downstream. Its efficiency decreases with the increasing uORF length, or by the presence of secondary structures, suggesting that the time taken to translate a uO...
متن کاملFurther Characterisation of the Translational Termination-Reinitiation Signal of the Influenza B Virus Segment 7 RNA
Termination-dependent reinitiation is used to co-ordinately regulate expression of the M1 and BM2 open-reading frames (ORFs) of the dicistronic influenza B segment 7 RNA. The start codon of the BM2 ORF overlaps the stop codon of the M1 ORF in the pentanucleotide UAAUG and ∼10% of ribosomes terminating at the M1 stop codon reinitiate translation at the overlapping AUG. BM2 synthesis requires the...
متن کاملTranslational termination-reinitiation in RNA viruses.
Viruses utilize a number of translational control mechanisms to regulate the relative expression levels of viral proteins on polycistronic mRNAs. One such mechanism, that of termination-dependent reinitiation, has been described in a number of both negative- and positive-strand RNA viruses. Dicistronic RNAs which exhibit termination-reinitiation typically have a start codon of the 3'-ORF (open ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- RNA
دوره 20 3 شماره
صفحات -
تاریخ انتشار 2014